Projectile Motion:

Strategy

Again, resolving this two-dimensional motion into two independent one-dimensional motions allows us to
solve for the desired quantities. The time a projectile is in the air is governed by its vertical motion alona.
Thus, we sobve for ¢ first. While the ball is rising and falling vertically, the horizontal motion continues at a
constant velocity. This example asks for the final velocity. Thus, we recombine the vertical and horizontal
results to obtain T at final time ¢, determined in the first part of the example.

Solution

{8) While the ball is in the air, it rises and then falls to a final position 10.0 m higher than its starting altitude.
Wa can find the time for this by using Equation 4.22:

1 s
¥=Jo+ gl = &t
If wa take the initial position yu to be zero, then the final position is y = 10 m. The initial vertical velocity is
the vertical component of the initial velocity:

wy = posinéy = (30.0 m/s)sin 45° = 21.2 mfs.

Substituting into Equation 4.22 for y gives us

10.0 m = (21.2 mis)t = (4.90 m/s ).

Reamanging terms gives a quadratic equation in f:
(490 m/s™)r* = (212 mifs)t + 10.0m = 0.
Use of the quadratic formula yields ¢ = 3.78 5 and f = 0.54 5. Since the ball is at a height of 10 m at two

times during its trajectory— once on the way up and once on the way down—we take the longer solution
for the time it takes the ball to reach the spectator:

= 3798

The time for projectile maotion is determined completely by the vertical motion. Thus, any projecile that
has an initial vertical welocity of 21.2 mfs and lands 10.0 m above its starting altitude spends 3.79 5 in the
air.

{5} We can find the final horizontal and vertical velocities v/, and &, with the l.uie of the result from (a).
Then, we can combine them to find the magnitude of the total velocity vector ¥ and the angle & it makes
with the horizontal. Since U, is constant, wa can solve for it at any harizontal location. We choose the
starting point because we know both the initial valocity and the initial angle. Therefore,

Uy = tpeosdy = (30 mis)cos 45° = 21.2 m/s.
The final vertical velocity is given by Equation 4.21:
v, = ty, = gl
Since vy was found in part (g} to ba 21.2 m/'s, wa have

v, =212 mfs - 9.8 /s’ (3.795) = =159 mfs.

The magnituds of the final velocity ¥ is

v=qfod ol = \f{zlz m/s)® + (= 15.9 mis) = 26.5 m/s.

The direction 8, is found using the inverse tangent:

g, = :m-l(ﬁ) = 1an-! (%) = 36.9° below the horizon.
n ;

Significance

{8) As mentioned earlier, the time for projectile motion is determined completely by the vertical motion.
Thus, any projectile that has an initial vertical velocity of 212 ms and lands 10.0 m abowve its starting
altitude spends 3.79 s in the air. (b) The negative angle means the welocity is 36.9" below the horizontal at
the paint of impact. This result is consistent with the fact that the ball is impacting at a point on the other
side of the apex of the trajectory and therefore has a negative y component of the welocity. The magnituds
aof the velocity is less than the magnitude of the initial velocity we expect since it is impacting 10.0 m
above the launch slevation.



Relative and Circular Motion:

Strategy

Given the speed of the jet, we can solve for the radius of the circle in the expression for the
centripetal acceleration.

Solution
Set the centripetal acceleration equal to the acceleration of gravity: 9.8 m/s> = v?/r.
Solving for the radius, we find

_ (134.1m/s)°

B 1835 m = 1.835 km.

Significance

To create a greater acceleration than g on the pilot, the jet would either have to decrease the
radius of its circular trajectory or increase its speed on its existing trajectory or both.



Newton's Laws:

Strategy

In (a), we are considering the first part of Newton’s first law, dealing with a body at rest; in (b), we
look at the second part of Newton’s first law for a body in motion.

Solution

a. When your car is parked, all forces on the car must be balanced; the vector sum is 0 N.
Thus, the net force is zero, and Newton’s first law applies. The acceleration of the car is
zero, and in this case, the velocity is also zero.

b. When your car is moving at constant velocity down the street, the net force must also be
zero according to Newton’s first law. The car’s frictional force between the road and tires
opposes the drag force on the car with the same magnitude, producing a net force of zero.
The body continues in its state of constant velocity until the net force becomes nonzero.
Realize that a net force of zero means that an object is either at rest or moving with constant
velocity, that is, it is not accelerating. What do you suppose happens when the car
accelerates? We explore this idea in the next section.

Significance

As this example shows, there are two kinds of equilibrium. In (a), the car is at rest; we say it is in
static equilibrium. In (b), the forces on the car are balanced, but the car is moving; we say that it
is in dynamic equilibrium. (We examine this idea in more detail in Static Equilibrium and Elasticity.)
Again, it is possible for two (or more) forces to act on an object yet for the object to move. In
addition, a net force of zero cannot produce acceleration.




Free Body Diagrams:



Figure 5.22 Since the acoeleration is pamliel io the skope and acting down fha slope, [t & most convonient fa project all foroes. onko a
-
coarTinain sySm whns one axis is paraiel 5o the siops and tha athar |s pependicular o it (moes shaen to the left of the sk, N is
- -
parpendioular 1o the siopa and T is paralisl 10 the siope, but W has oomponants akong both axes, ramely, w,mu‘;.Hn.}nnawﬂgw

line fo shore that it has been wwwlm:mmm-ﬂnmnwh wy, 5o there |s ro acceleration
parpendouler io the skopa, but f s less tan i, , so ther is a dowrslope acostoration [alorg the axis pamlisl 1o the slopa).

Strategy

This is a two-dimensional problem, since not all forces on the skier {the system of interest) are parallsl. The
approach we have used in bwo-dimensional kinematics also works well hers. Choose a convenient
coordinate system and project the vectors onto its axes, creating two one-dimensional problemns to solve.
The most convenient coordinate system for motion on an incline is one thet has one coordinate parallsl to
tha slope and one perpendicular to the slope. (Motions along mutually perpendicular axes are
indepandent.) We use x and y for the parallel and perpandicular directions, respactively. This choice of
aves simplifies this type of problem, because there is no motion perpendicular to the slope and the
acceleration is downslope. Regarding the forces, friction is drawn in opposition to motion (friction always
opposes forward motion) and is always parallel to the slopa, w2, is drawn parallel to the slope and
downslope (it causas the motion of the skier down the slope), and ', is drawn as the componant of
weight perpendicular to the slope. Then, we can consider the separate problems of forces parallel to the
slope and forces perpendicular to the slope.

Solution
The magnitude of the component of weight parallel to the slope is

w, = wsin 25° = mg sin 25°,

and the magnitude of the component of the weight parpandicular to the slope is

= weos 257 = mg cos 257,

a. Meglact friction. Since the acceleration is parallsl to tha slope, we need only consider forces parallal to
tha slope. (Forces perpendicular to the slope add to zero, since thers is no acceleration in that direction.)
The forces parallel to the slope are the component of the skier's weight parallel to slope wy, and friction f.
Using Mewton's second law, with subscripts to denote guantities parallel to the slope,

Fres s

ay =

whare Fe x = iy = mg sin 25", assuming no friction for this part. Therefore,

_ . _ mgsin 25°
Ay =~y ==

(9.80 mis” ) (0.4226) = 4.14 m/s?

= g 5in 25°

is the accaleration.

b. Include friction. We have a given value for friction, and we know its direction is parallel to the slope and
it opposes motion betwean surfaces in contact. So the net external force is

Py =wy - f.

Substituting this into Mewton's second law, a, = F fm, gives

dy = = -
m m m

Foes s wy = f mg $in 25° — f

Wa substitute known values to obiain

(60.0 kg) (980 mis?) (0.4226) - 45.0N
= 600 kg :

dx

This gives us
e = 339 mis’,

which is the acceleration parallel to the incline whean there is 45.0 M of opposing friction.

Significance

Since friction always opposes motion between surfaces, the acceleration is smaller when there is friction
than whien there is none. It is a general result that if friction on an incline is negligible, then the accelaration
down the incline is a = g sin #, regardless of mass. As discussed previously, all objects fall with the same
acceleration in the absence of air resistance. Similarly, all objects, regardiess of mass, slide down a
frictionless incline with the same acceleration (if the angls is the sama).

Springs and Friction:



Figure 5.29 A spring exerts its force proportional to a displacement, whether it is compressed or
stretched. (a) The spring is in a relaxed position and exerts no force on the block. (b) The spring is

compressed by displacement AR 1 of the object and exerts restoring force =RIARIP 1. (c) The spring
is stretched by displacement APl 2 of the object and exerts restoring force —RIARI 2.



Work-Energy Theorem:
Strategy

The free-body diagram at the final position of the object is drawn in Figure 7.12. The gravitational work is
the only work done over the displacement that is not zero. Since the weight points in the same direction as
the net vertical displacement, the total work done by the gravitational force is positive. From the work-
energy theorem, the starting height determines the speed of the car at the top of the loop,

1
—mg(ys — y1) = Emvzz,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and
gravity are both down and the acceleration is centripetal, so

ampz = — =

F_N+mg_v§
m m R’

The condition for maintaining contact with the track is that there must be some normal force, however
slight; that is, N > 0. Substituting for v% and N, we can find the condition for y; .

Solution

Implement the steps in the strategy to arrive at the desired result:

mv3  —mgR+2 - 2R R
N =-mg+ R2= Mg+ Eg(yl )>0 or y1>57.

Significance

On the surface of the loop, the normal component of gravity and the normal contact force must provide
the centripetal acceleration of the car going around the loop. The tangential component of gravity slows
down or speeds up the car. A child would find out how high to start the car by trial and error, but now that
you know the work-energy theorem, you can predict the minimum height (as well as other more useful
results) from physical principles. By using the work-energy theorem, you did not have to solve a differential
equation to determine the height.



Friction:

Strategy

We analyze the motions of the two blocks separately. The top block is subjected to a contact force exerted
by the bottom block. The components of this force are the normal force N and the frictional force
—0.400N,. Other forces on the top block are the tension T'i in the string and the weight of the top block
itself, 19.6 N. The bottom block is subjected to contact forces due to the top block and due to the floor.
The first contact force has components —N; and 0.400N;, which are simply reaction forces to the
contact forces that the bottom block exerts on the top block. The components of the contact force of the
floor are N, and 0.400N>. Other forces on this block are — P, the tension T'i, and the weight -39.2 N.

Solution

Since the top block is moving horizontally to the right at constant velocity, its acceleration is zero in both
the horizontal and the vertical directions. From Newton’s second law,

ZFJ‘ = ma, ZFy = ma,

T - 0.400N; 0 N —-196N = 0.

Solving for the two unknowns, we obtain Ny = 19.6 N and T" = 0.40N; = 7.84 N. The bottom block is
also not accelerating, so the application of Newton’s second law to this block gives

E F, = mya, Z F, = mya,

T - P+0400 N; + 0400 N2 =0 Ny, —=392N-N; =0.

The values of N and T were found with the first set of equations. When these values are substituted into
the second set of equations, we can determine N2 and P. They are

N, =588N and P=392N.

Significance

Understanding what direction in which to draw the friction force is often troublesome. Notice that each
friction force labeled in Figure 6.17 acts in the direction opposite the motion of its corresponding block.



Power

Strategy

At constant velocity, there is no change in kinetic energy, so the net work done to move the car is zero.
Therefore the power supplied by the engine to move the car equals the power expended against gravity
and air resistance. By assumption, 75% of the power is supplied against gravity, which equals

mﬁ V= mgu sin 6, where 8 is the angle of the incline. A 15% grade means tan § = (0.15. This
reasoning allows us to solve for the power required.

Solution

Carrying out the suggested steps, we find

0.75 P = mgv sin(tan™! 0.15),

or

. (1200 x 9.8 N)(90 m/3.6 s)sin(8.53°)

0.75 = sl

or about 78 hp. (You should supply the steps used to convert units.)

Significance

This is a reasonable amount of power for the engine of a small to mid-size car to supply

(1 hp = 0.746 kW). Note that this is only the power expended to move the car. Much of the engine’s
power goes elsewhere, for example, into waste heat. That’s why cars need radiators. Any remaining power
could be used for acceleration, or to operate the car's accessories.



Center of Mass

Center of Mass of the Earth-Moon System

Using data from text appendix, determine how far the center of mass of the Earth-moon system is from
the center of Earth. Compare this distance to the radius of Earth, and comment on the result. Ignore the
other objects in the solar system.

Strategy

We get the masses and separation distance of the Earth and moon, impose a coordinate system, and use
Equation 9.29 with just N = 2 objects. We use a subscript “e” to refer to Earth, and subscript “m” to refer
to the moon.

Solution

Define the origin of the coordinate system as the center of Earth. Then, with just two objects, Equation
9.29 becomes

Mele + My,
me + My

From Appendix D,

m, =597 x 10* kg
mm =7.36 x 10*2 kg

Fm = 3.82 X 10° m.

We defined the center of Earth as the origin, so r. = 0 m. Inserting these into the equation for R gives

(5.97 x 10* kg)(0 m}+(7.36 x 10 kg)(3.82 x 10° m)
- 5.97 x 10™ kg+7.36 x 10 kg

464 x 10° m.

R

Significance

The radius of Earth is 6.37 X 10° m, so the center of mass of the Earth-moon system is (6.37 — 4.64)
x10°m =173 x 10°m = 1730 km {roughly 1080 miles) below the surface of Earth. The location of
the center of mass is shown (not to scale).

Yi

5




Conservation of Momentum

a. First, we posit conservation of momentum. For that, we need a closed system. The choice here is
the system (hammer + Iron Man), from the time of collision to the moment just before Iron Man and
the hammer hit the tree. Let:

o My = mass of the hammer

o M} = mass of Iron Man

o py = velocity of the hammer before hitting Iron Man

o v = combined velocity of Iron Man + hammer after the collision

Again, Iron Man’s initial velocity was zero. Conservation of momentum here reads:
MHUH = (M]-] + MI) u.
We are asked to find the mass of the hammer, so we have

M]{UH = MHU+MIU

My(vy —v) = M
_ Miv
My = =5
_ ookg)( )
10 3—(755)
= 73ke.

Considering the uncertainties in our estimates, this should be expressed with just one significant
figure; thus, My = 7 x 10! kg.
b. The initial kinetic energy of the system, like the initial momentum, is all in the hammer:

1
Ki = EMHUIE.']
= 2(70kg) (10 m/s)*
=35001.

After the collision,
Ky = %(MH + M) v?

= 1(70 kg + 200 kg) (2.67 m/s)’
=9601.

Thus, there was a loss of 3500J — 960 ] = 2540 J.



Inelastic Collisions

Define the system to be the two particles. This is a collision, so we should first identify what kind. Since we
are told the two particles form a single particle after the collision, this means that the collision is perfectly
inelastic. Thus, kinetic energy is not conserved, but momentum is. Thus, we use conservation of
momentum to determine the final velocity of the system.

Solution

Treat the two particles as having identical masses M. Use the subscripts p, n, and d for proton, neutron,
and deuteron, respectively. This is a one-dimensional problem, so we have

Muvy, — Muv, = 2Muy.

The masses divide out:
Up—Un = 214
7.0 x 10°m/s —4.0 X 10°m/s = 2u4
va = 1.5 x 10°m/s.

The velocity is thus Vg = (1.5 x 10° m/s) i.

Significance

This is essentially how particle colliders like the Large Hadron Collider work: They accelerate particles up
to very high speeds (large momenta), but in opposite directions. This maximizes the creation of so-called
“daughter particles.”



Rotational Kinematics

Strategy

The average angular acceleration can be found directly from its definition @ = ‘;—‘f because the final

angular velocity and time are given. We see that A®w = ®fna — Dinitial = 250 rev/min and At is 5.00 s.
For part (b), we know the angular acceleration and the initial angular velocity. We can find the stopping
time by using the definition of average angular acceleration and solving for At, yielding

A
Ar= 29,
[r4

Solution
a. Entering known information into the definition of angular acceleration, we get

Aw 250 rpm
At~ 5005

a=

Because Aw is in revolutions per minute (rpm) and we want the standard units of rad/s® for angular
acceleration, we need to convert from rpm to rad/s:

Aw =250  27rad lmin ., rad
min  rev 60 s s
Entering this quantity into the expression for @, we get
_ Aw _ 26.2rad/s — 524 rad/s%.

~ At 500s

b. Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that A is —26.2 rad/s,
and a is given to be —87.3 rad/s?. Thus,

Ar= —262m2dls 00,

—87.3 rad/s?

Significance

Note that the angular acceleration as the mechanic spins the wheel is small and positive; it takes 5 s to
produce an appreciable angular velocity. When she hits the brake, the angular acceleration is large and
negative. The angular velocity quickly goes to zero.



Moment of Inertia

Strategy

a. We use the definition for moment of inertia for a system of particles and perform the summation to
evaluate this quantity. The masses are all the same so we can pull that quantity in front of the
summation symbol.

b. We do a similar calculation.

c. We insert the result from (a) into the expression for rotational kinetic energy.

Solution

al= Z mjr? = (0.02kg)2 x (0.25m)* +2 x (0.15m)* +2 x (0.05m)*) = 0.0035kg - m’.
J
b. I = Z mjr? = (0.02kg)(2 x (0.25 m)? + 2 x (0.15 m)?) = 0.0034 kg - m?.

J
c.K= %Ia)2 = %(0.0'035 kg - m2)(5.0 X 2xrad/s)?> = 1.73].

Significance

We can see the individual contributions to the moment of inertia. The masses close to the axis of rotation
have a very small contribution. When we removed them, it had a very small effect on the moment of
inertia.



Torque

Strategy

We calculate each torque individually, using the cross product, and determine the sign of the torque. Then
we sum the torques to find the net torque.

Solution

- -
We start with F; . If we look at Figure 10.35, we see that F'; makes an angle of 90° + 60° with the radius
vector i') Taking the cross product, we see that it is out of the page and so is positive. We also see this
from calculating its magnitude:

[%1| = rFisin 150° = 0.5 m(20 N)(0.5) = 5.0N - m.

- -
Next we look at F,. The angle between F, and T is 90° and the cross product is into the page so the
torque is negative. Its value is

|7£2| = —rF,5in 90° = =0.5 m(30N) = —15.0N - m.

- -
When we evaluate the torque due to F3, we see that the angle it makes with TiszerosoT X F; =0.

-3
Therefore, F3 does not produce any torque on the flywheel.

We evaluate the sum of the torques:

Tyt = ), Tl =5-15=~10N-m.

Significance
The axis of rotation is at the center of mass of the flywheel. Since the flywheel is on a fixed axis, it is not

-
free to translate. If it were on a frictionless surface and not fixed in place, F; would cause the flywheel to

-
translate, as well as F;. Its motion would be a combination of translation and rotation.



Statics



wy = m g is the weight of mass m,; ws = my g is the weight of mass m;;
w = mg is the weight of the entire meter stick; w = mg is the weight of unknown mass m;;
Fg is the normal reaction force at the support point 5.

We choose a frame of reference where the direction of the y-axis is the direction of gravity, the direction of
the x-axis is along the meter stick, and the axis of rotation (the z-axis) is perpendicular to the x-axis and
passes through the support point 5. In other words, we choose the pivot at the point where the mater stick
touches the support. This is a natural choics for the pivot because this point does not move as the stick
rotates. Now we are ready to set up the free-body diagram for the meter stick. W indicate the pivot and
attach five vectors representing the five forces along the line representing the meter stick, locating the
forces with respect to the pivot Figure 12.10. At this stage, we can identify the laver arms of the five forces
given the information provided in the problem. For the three hanging masses, the problem is explicit about
their locations along the stick, but the information about the location of the weight w is given implicitly. The
key word here is "uniform.” We know from our previous studies that the CM of a wniform stick is located at
its midpoint, so this is where we attach the weight w, at the 50-cm mark.

3
Fg=7
n T3
Fs = H
o
"1 W, w

Figure 12.10 Frea-body diagram for Sha metor stick. The Rt s chosen at the:
‘suppon poit 5.

Solution
With Figure 12.9 and Figure 12.10 for reference, we begin by finding the lever arms of the five forces
acting on the stick:

rp = 300cm+40.0cm = 70.0em

r1 = 40.0cm

r = 50.0cm=30.0cm = 20.0cm
rg = 0.0cm (because Fy is attached at the pivot)
ry = 300cm.

MNow we can find the five torques with respect to the chosen pivot:

T = +runsin90° = +rymg {counterclockwise rotation, positive sense)
Ta = 4rpwssin 307 = +ramag {counterclockwise rotation, positive sense)
T = rwsin W = +rmg {gravitational torque)

18 = rgFssinfs =0 (because rg = 0 cm)

T = =riunsin90° = —rimag (clockwise rotation, negative sense)

The second equilibrium condition (equation for the torques) for the meter stick is
T+ trhrgt =0

‘When substituting torque values into this equation, wa can omit the torques giving zero contributions. In
this way the second equilibrium condition is

+rimig + ramag + rmg — rymyg = 0.

Selacting the +y-diraction to be parallel to F g, the first equilibrium condition for the stick is
=ty = ity = 0+ Fg =y = 0.
Substituting the forces, the first equilibrium condition becomes

=myg = mg=mg+ Fg=mg=0

We solve these i il for the values m3 and Fs. In Eguation 1217, we
cancel the g factor and rearange the terms to obtain

Fimy = rym + ram: + orm.

T obtain m; we divide both sides by ri, so we have

myo=gtmy o+ g+ fm
=32(50.0g) + B (75.0g) + 2 (150.0g) = 31603 g = 317 g.

To find the normal reaction force, we rearrange the terms in Equation 12,18, converting grams to
kilograms:

Fs =(m +m+m+m)g
= (50.0 + 75.0 + 150.0 + 316.7) x ]U_Skg x® 9.8;5; =58N.

Angular Momentum



Strategy

Wi resolve the accelaration into x- and y-components and use the kinematic equations to expreas the
vedocity 85 a function of acceleration and time. We insert these expressions into the linear momentum and
then calculate the angular momentum uwsing the cross-product. Since the position and momentum vectors
are in the xy-plans, we axpect the angular momentumn vector to be along the z-axis. To find the torque, we
take the time derivative of the angular momentum.

Solution

The meteor is entering Earth's atmosphere at an angle of $0.0" below the horizontal, so the components
of the acceleration in the x- and p-directions are

ax =10, ay=-20mf"
Wi write the velocities using the kinematic equations.

v, =0, o, ==20 x 107 mfs - (20 m/s*)r.

a. The angular momeantum is

-+

1 =7 x p=(25.0kmi +250kmj) x 15.0kg(0i + v,j)
= 15.0 kg[25.0 km(v, K]
= 15.0kg[2.50 % 10° m(=2.0 % 10" mfs — (2.0 m/s)k].

At ¢t = [, the angular momentum of the meteor about the origin is

- -~ -~
Iy = 15.0kg[2.50 % 10* m(=2.0 x 10° m/s)k] = 7.50 » 10" kg - m*/s(=k).
This is the instant that the observer sess the meteor.
b. Tz find the torque, we take the time dedvative of the angular momentum. Taking the time derivative
=
of | as a function of time, which is the second equation immediately above, wa have

-
% = —150kg(2.50 % 10° m)(2.0 mis"jk.

) dl =+
Then.alnceﬁ - Et,mha

&

ZT:‘= ~7.5 % 10°N - mk.

The units of torque are given as newton-maters, not to be confused with joules. As a chack, we note
that the laver arm is the x-componant of the vector T in Figure 11.10 since it is perpandicular to the
force acting on the meteor, which is along its path. By Mewton's second law, this force is
F = ma(~) = 15.0 k(2.0 m/s®)(—j) = 30.0 kg - m/s*(—j).
The lever arm is
Ti=25x 10*mi.
Thus, the torque is
Yi=t x F =25 x 10° mi) x (=300 kg - mis2j),
=75 x 10F N m(-k).

Significance

Since the meteor is accelerating downward toward Earth, its radius and velocity vector are changing.
Thersfara, s'n:ErT =F x a the angular momentum is changing as a function of time. The torque on the
metecr about the origin, howewver, is constant, because the lever arm FJ_ and the force on the meteor are
constants. This example is impaortant in that it illustrates that the angular momentum depends on the
choice of origin about which it is calculated. The methods used in this example are also important in
deweloping angular momentum for 8 systemn of particles and for a rigid body.



Gravitation

Answer: This question asks for a change in potential energy. We will use the symbol
A to mean "the change in". So, we will use the equation to find AU, the change in
gravitational potential energy:

AU = Ufinal - Uinitial

(2400 kg)(100000 kg) (2400 kg)(100000 kg)
Au = (‘G 100 m ) . ( 100 m )

Take out common factors

1
AU =-G(240000 kg)(100000 kg)(looo gl g )

9
1000 m

AU=-G (240000 kg) (100000 kg)(-

AU =-(6.673% 10™'* N-m?%/ kg’ )(240000 kg)(1 k(- —2
( 0 9°)( 9)(100000 kg) (" 1000’")

AU=0.0144 N'-m
AU=0.01443]

The change in gravitational potential energy as the asteroids move away from each
other is 0.0144 Joules.



Harmonic Motion

Strategy

We first find the angular frequency. The phase shift is zero, ¢p = 0.00 rad, because the block is released
from rest at x = A = +0.02 m. Once the angular frequency is found, we can determine the maximum
velocity and maximum acceleration.

Solution

The angular frequency can be found and used to find the maximum velocity and maximum acceleration:

o = 1.§:s =400s"1;
Umax = Aw=0.02m (4.00 s_l) = 0.08 m/s;

Qmax

Aw? = 0.02m(4.0057!)” = 032 /s>,

All that is left is to fill in the equations of motion:
x(#) = Acos(wt+ ¢) = (0.02 m)cos (4.00 s‘lt) ;
v () —Umaxsin (@t + ¢) = (~0.08 m/s) sin(4.00 s~'1);
a(t) = —amucos (ot +¢) = (—0.32m/s?) cos (4.0057'7).

Significance

The position, velocity, and acceleration can be found for any time. It is important to remember that when
using these equations, your calculator must be in radians mode.



Pendulums

Strategy

We are asked to find g given the period T and the length L of a pendulum. We can solve T" = 27r‘/%' for
g, assuming only that the angle of deflection is less than 15°.

Solution

1.Square T = 24 /ﬁ and solve for g:
L
2
g = 4r F.
2. Substitute known values into the new equation:

_ 4,2 075000m
(1.7357 52

3. Calculate to find g:

g = 9.8281 m/s>.

Significance

This method for determining g can be very accurate, which is why length and period are given to five digits
in this example. For the precision of the approximation sin @ =~ @ to be better than the precision of the
pendulum length and period, the maximum displacement angle should be kept below about 0.5°.



Waves

Strategy

a. The speed of the wave can be derived by dividing the distance traveled by the time.
b. The period of the wave is the inverse of the frequency of the driving force.
c. The wavelength can be found from the speed and the period v = A/T.

Solution

a. The first wave traveled 30.00 m in 6.00 s:

30.00 m m
6.00s R S
b. The period is equal to the inverse of the frequency:
1 1
TF= = - =050s.
= 2008t °

c. The wavelength is equal to the velocity times the period:

A= T = 5.00%(0.50 $) = 2.50 m.

Significance

The frequency of the wave produced by an oscillating driving force is equal to the frequency of the driving
force.



Bernoulli’s

Strategy
We must use Bernoulli’'s equation to solve for the pressure, since depth is not constant.

Solution

Bernoulli’s equation is

1 1
1+ Epv% +pghy = py + EPU% + pghy

where subscripts 1 and 2 refer to the initial conditions at ground level and the final conditions inside the
nozzle, respectively. We must first find the speeds v; and v;. Since Q = A, v, we get

-3_3
by @ 400X 107mYs

AL 2320 x 1072m)’

Similarly, we find

vy = 56.6 m/s.

This rather large speed is helpful in reaching the fire. Now, taking A to be zero, we solve Bernoulli’s
equation for p;:

1
p=p+ Ep(v% — 13) — pghy.

Substituting known values yields

P2 =162 x 10° N/m” + 1(1000 kg/m*)[(12.4 m/s)* — (56.6 m/s)]
— (1000 kg/m3)(9.80 m/s?)(10.0 m)

= -2.9kPa ~ 0kPa (when compared to air pressure).

Significance

This value is a gauge pressure, since the initial pressure was given as a gauge pressure. Thus, the nozzle
pressure equals atmospheric pressure because the water exits into the atmosphere without changes in its
conditions.



