Projectile Motion:
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Relative and Circular Motion:
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Newton's Laws:
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Free Body Diagrams:
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Springs and Friction:

Figure 5.29 A spring exerts its force proportional to a displacement, whether it is compressed or stretched. (a) The spring is in a relaxed position and exerts no force on the block. (b) The spring is compressed by displacement Δ𝐱⃗ 1 of the object and exerts restoring force −𝑘Δ𝐱⃗ 1. (c) The spring is stretched by displacement Δ𝐱⃗ 2 of the object and exerts restoring force −𝑘Δ𝐱⃗ 2.


Work-Energy Theorem:
[image: ]
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Stratogy

‘Agai,resohing this two~dmenslonal motin nfo two independent ono-imensionslmotons alows s o
Solv fortho dsied quanitis. Th tma a projctl s the ai & governed by s vetcalmion loe.
Thus,wo solve fo  fs. Whdo the ball i risng an faling verticaly, he hizontal motion continuss a &
onstant velocity.Tis exarmpl asks fo thefnal velociy.Thus, wa recombine the vertoa and horzontal
ot 0 obtan D t fnltimo £, determined nth st part o tho exampl.

Solution

() Whilothobalis nth a1 ises an then a0 a ol position 100 m Highor than s saring altuce.
Wi can i th tmo or i by using Equation 422

i
+ gt = Le
Y=t vt = g

1o tako the nital postion 0 t be 2o, then the final posion s
e vertcalcomponant of the il velosi:

10m. The it verical velosity s

0y = tasindy = (0.0 mis)sin 45° = 21.2 mis

‘Substiuting into Equation 4.2 fory gves us

100m = @12 mis) ~ (490 mist).

Riaranging torms gives a quacati squaton n

(90w - QL2 0+ 100m =0.

s of the quadratic formus yieds £~ 8.7 s and ¢ 0.54 5. S thabal s at  heght of 10 mattwo.
imes dusing s trajctory—once on ha way up an once on the way down—we ake the onger soluton
for thetim it takas te balltoresch the spectator:

=395

Thetim fo projectie mation s determined compiataly by the vertical mion.Thus,any pojectie that
s an it vertcal vlooty of 21.2 s and ands 10.0 m abova s tating it spand 8.79 s in the

{51 Wo can find he final hoizotal an vrticlvelocies b, and L, with e use f theresult o .
Then, we can comibinatham tofn the magnitude of e totlvalooty vector ¥ an the angl 0 makos
withthohorzontl. Since , is constant, we can sov ort a any horzontl location. Wo choose the
starting point becausa we know bath the il velocity and the il angl. Thrsfars,

0 = tpcostly = (30 mis)cos 45° = 212 mls,

Thefinl vetcal velcity i given by Equston 421

vy = 1o, — 51

Since ty, was found inpart ()t be 212 s, we ave

4y = 21200 - 98 mEG19%) = 159 .

The magntude of the il velociy s
o= 45 = \[@12 0 + (= 159 mi)? = 26.5 ms.

The disction 6, i found using th inverse tangant:

()«

= 36.9° below the horizon,

Significance
{6/ mentoned arr, the time fo projctle mation s detamine compitaly by the vertical motio.
Thus, any projcti that hasan nital vertical velocty o 21.2 s and lands 10.0 m abovo s stariog
attud spends 3.79 s n the ai. ) The negatve ancle means the velacty is 36.9° below th horzontl st
he peint o mpact Thi resuts consstan withth fact tht the ball s impacting at & pint on the ofher
5o of e apex o thetrafctory and therelrs has  nagatvey componant of tha velociy The magnitucs.
of the veloct s lss than the magrituceof the il velooty wa expect sincs i & mpacting 10.0m
above the launch alevation




image2.png
Strategy

Given the speed of the jet, we can solve for the radius of the circle in the expression for the
centripetal acceleration.

Solution
Set the centripetal acceleration equal to the acceleration of gravity: 9.8 m/s> = v?/r.
Solving for the radius, we find

(134.1 m/s)?
r=———

o5 = 1835m=1835km.

Significance

To create a greater acceleration than g on the pilot, the jet would either have to decrease the
radius of its circular trajectory or increase its speed on its existing trajectory or both.
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Strategy

In (a), we are considering the first part of Newton’s first law, dealing with a body at rest; in (b), we
look at the second part of Newton’s first law for a body in motion.

Solution

a. When your car is parked, all forces on the car must be balanced; the vector sum is 0 N.
Thus, the net force is zero, and Newton’s first law applies. The acceleration of the car is
zero, and in this case, the velocity is also zero.

b. When your car is moving at constant velocity down the street, the net force must also be
zero according to Newton’s first law. The car’s frictional force between the road and tires
opposes the drag force on the car with the same magnitude, producing a net force of zero.
The body continues in its state of constant velocity until the net force becomes nonzero.
Realize that a net force of zero means that an object is either at rest or moving with constant
velocity, that is, it is not accelerating. What do you suppose happens when the car
accelerates? We explore this idea in the next section.

Significance

As this example shows, there are two kinds of equilibrium. In (a), the car is at rest; we say it is in
static equilibrium. In (b), the forces on the car are balanced, but the car is moving; we say that it
is in dynamic equilibrium. (We examine this idea in more detail in Static Equilibrium and Elasticity.)
Again, it is possible for two (or more) forces to act on an object yet for the object to move. In
addition, a net force of zero cannot produce acceleration.
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Stratogy

This s 8 two-cimansions roblam, since ot l orces o th skier th systam of nares)ara paralls. The
approach we have ued intwo-dimensiona kinematics also works wel hro. Choose  converient
oordinats systam an project the vectorsonto i axes, cresting o one-cimensional problams 0 soe.
“The most canveriant coordinate ystam for mofion on an inclne s 00 tht has o0 coordinals parale o
the Sopa ant ane perpendicuar o he sops. Motons along mutually perpencicular axes re
ndepandent) We use x any fo the parallel and perpenciculr iectons, respaciively. T choca of
e simpifies this typaof problm, bacausa thaa & no motion parpendicsar o the siope and he
‘acoalertion s downsope. Regarding theforces,fition s craw i oppostion o motion (ction aiays
‘opposes forward moto) an s iays paralel o the lope, v s drawn paralle f s sopo and
ounsiop (it causos the motion of e skierdown the slope), and i drawn as the compenant of
weight perpenciculr t th sops, Then, we can consider t separata probles offorces parallel o he
Slope and foroes perpencicular to th siope.

Solution

The magntude ofthe component of welght paralil o th sopo s

osin25

s mgsin25",

and the magniude of the component o the weight perpendicuar o th sopo s

) = Wweos 25° = mg cos 25"
. NogloctFiction. Snce the acceleraion s parale o th siope, we nesd anly conside orces paralil o
ha sope. (Forces perpenular o the lope add 0 2o, since ther s i accelration  hat diection)
Thefocos paralll t the sopo ar e componet of the skiors weigh parale o iopo L an fction .
Using Neworts sscond aw, ith subscrits to denots quanies parate o thesiope,

Ry

Whore Fi x = 0 = m sin 25", assuming o fictio for ti par. Trerefors,

e
(050 mi) 04226) = 414 mist

s the accaeration.

. Includo ficton.We have  gven valuefor icton an we know s drecton i parall o the siops and
topposes moion betwoen sufaces i contact. 5 th netextomal orco s

Fuax =0~ f.

‘Substiuting tis into Newton's second aw, g, = Fo s/, Gves

oo Fx _wemf _ mesin2s-g

Wie substista known vaues o obtain

(600kg) (950 mis’) (04226) - 450N
w00k

This gies us

=339 mic,

‘which s the accaleration parstelf th ncine whan thers i 45,0 N ofoppasing ricton

Significance
Since icton avays opposes motion botween sufaces, theacceleration s smalkr when there s fction
han whn thero s none. 15 general resul that i friction on an nci s neglghe, then tho cceleaton
downthe inclina i a = g s 0, regarciessof mass. A ciscussec previously, a iect all with 1 same.
‘acoaleration in tho absence ofar rsistance. Semary,all bjcts, ragardiess of mass, lde down a
rictiontscs nclna with th sama acoslaaton (1t angi s ths samel,
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Strategy

The free-body diagram at the final position of the object is drawn in Figure 7.12. The gravitational work is
the only work done over the displacement that is not zero. Since the weight points in the same direction as
the net vertical displacement, the total work done by the gravitational force is positive. From the work-
energy theorem, the starting height determines the speed of the car at the top of the loop,

1
-mg(y — y1) = EmUzz,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and
gravity are both down and the acceleration is centripetal, so

F N+mg v%
“P= T " m R

The condition for maintaining contact with the track is that there must be some normal force, however
slight; that is, N' > 0. Substituting for U% and N, we can find the condition for y; .

Solution

Implement the steps in the strategy to arrive at the desired result:

2
mv;  —mgR +2mg(y; — 2R) 5R
N=- = 0 ==
mg + = = >0 or y 2

Significance

On the surface of the loop, the normal component of gravity and the normal contact force must provide
the centripetal acceleration of the car going around the loop. The tangential component of gravity slows
down or speeds up the car. A child would find out how high to start the car by trial and error, but now that
you know the work-energy theorem, you can predict the minimum height (as well as other more useful
results) from physical principles. By using the work-energy theorem, you did not have to solve a differential
equation to determine the height.




