1. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a)
$$a_n = \frac{3+5n^2}{n+n^2}$$

(b) $a_n = \ln(n+1) - \ln(n)$
(c) $a_n = \frac{n^2}{\sqrt{n^3 + 4n}}$
(d) $\{0, 1, 0, 0, 1, 0, 0, 0, 1, \dots\}$

(a)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3+5n^2}{n+n^2} = 5 \implies converges$$

(b)
$$\lim_{n \to \infty} an = \lim_{n \to \infty} \left(\ln(n+1) - \ln(n) \right) = \lim_{n \to \infty} \ln\left(\frac{n+1}{n}\right)$$

 $= \lim_{n \to \infty} \ln\left(1 + \frac{1}{n}\right) = \ln(1) = 0 \Rightarrow \text{ converges}$
(c) $\lim_{n \to \infty} an = \lim_{n \to \infty} \frac{n^2}{\sqrt{n^3 + 4n}} = \infty \Rightarrow \text{ diverges}$

2. Let
$$a_n = \frac{2n}{3n+1}$$
.

- (a) Determine whether $\{a_n\}$ is convergent.
- (b) Determine whether $\sum_{n+1}^{\infty} a_n$ is convergent.

(a)
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{3n+1} = \frac{2}{3} \implies converges$$

(b) Since Riman to, series diverges by divergent

test.

3. Determine whether the geometric series is convergent or divergent. If it is convergent, find the sum.

(a)
$$2 + 0.5 + 0.125 + 0.03125 + \cdots$$

(b) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{4^n}$
(d) $\gamma = \frac{0.5}{2} = \frac{1}{4} \implies |r| < 1$
 $\implies Convergen to \frac{a}{(-r)} = \frac{2}{1-\frac{1}{4}} = \frac{8}{3}$
(b) $\sum \frac{(-3)^{n-1}}{4^n} = \frac{1}{4} \sum (\frac{-3}{4})^{n-1}$
 bn
 bn converges to $\frac{a}{1-r}$ where $a=1$, $r=\frac{-3}{4}$
 $\frac{a}{1-r} = \frac{1}{1-\frac{-3}{4}} = \frac{4}{7}$
 $\implies a_n = \frac{1}{4} b_n$ converges to $\frac{1}{4}x\frac{4}{7} = \frac{1}{7}$

4. Determine whether $s_n = \sum_{n=2}^{\infty} \frac{1}{n^3 - n}$ is convergent or divergent by expressing it as a telescoping sum. Find the sum if it's convergent.

5. Express $0.\overline{46} = 0.4646464646 \cdots$ as a ratio of integers.

$$0.464646... = 0.46 + 0.0046 + 0.000046 + ...$$

$$= \frac{46}{100} + \frac{46}{100^2} + \frac{46}{100^3} + ...$$

$$\Rightarrow a = \frac{46}{100}, r = \frac{1}{100}$$

$$Irl < l \Rightarrow 0.46 \text{ converges } \pi \theta = \frac{46}{1-r} = \frac{46}{99}$$

6. Find the values of x for which the series $\sum_{n=1}^{\infty} (-5)^n x^n$ converges. Find the sum of the series for those values of x.

 $\sum_{n=1}^{\infty} (-5)^n x^n = \sum_{n=1}^{\infty} (-5x)^n$ Geometric series with r=-5x ⇒ an converges <⇒ [r] <1 $\Rightarrow \sum a_{ij} = \frac{a_{ij}}{1-x_{ij}} = \frac{-Sx}{1-(-Sx)} = \frac{-Sx}{1+Sx}$

7. Use the integral test to determine whether the series $\sum_{n=1}^{\infty} n^2 e^{-n^3}$ is convergent or divergent.

$$f(x) = x^{2}e^{-x^{3}}$$
positive, continuous, decreasing on $[1,\infty)$

$$\int_{1}^{\infty} x^{2}e^{-x^{3}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{x^{2}e^{-x^{3}}}{x^{2}e^{-x^{3}}} dx = \lim_{t \to \infty} \left[\frac{-1}{3}e^{-x^{3}} \right]_{1}^{t}$$

$$= \frac{-1}{3} \lim_{t \to \infty} \left(e^{t^{3}} - e^{t}\right) = \frac{1}{3e}$$

* Use U-substitution from calcI to evaluate the integral.

8. Determine whether the series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ is convergent or divergent.

 $f(x) = \frac{1}{x \ln x}$ Continuous, positive on $[2, \infty)$, decreasing $\Rightarrow \int_{2}^{\infty} \frac{1}{x \ln x} dx = \lim_{x \to \infty} [\ln(\ln x)]_{2}^{1}$ $= \lim_{t \to \infty} \left[\ln (\ln(t)) - \ln(\ln(2)) \right]$ $= \infty \implies \text{diverges.}$

9. Determine whether the series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$

(b) $\sum_{k=1}^{\infty} \frac{\ln k}{k}$
(c) $\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}}{\sqrt{k^3+4k+3}}$
(d) $\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n-2}$
(e) $\sum_{n=1}^{\infty} \frac{n^2+n+1}{n^4+n^2}$

$$\frac{1}{K^{\frac{3}{6}}}$$
 converges by p-test \rightarrow an converges

(d)
$$a_n = \frac{4^{n+1}}{3^{n-2}} > \frac{4 \cdot 4^n}{3^n} = 4 \left(\frac{4}{3}\right)^n$$

 $\left(\frac{4}{3}\right)^n$ is a geometric series with $(r(=\frac{4}{3})) = diverges$
 \Rightarrow an diverges.

10. Test the series for convergence or divergence.

(a)
$$-\frac{2}{5} + \frac{4}{6} - \frac{6}{7} + \frac{8}{8} - \frac{10}{9} + \cdots$$

(b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3 + 4}$
(a) $a_n = \sum_{n=1}^{\infty} (-1) \frac{2n}{n+4}$
 $b_n = \frac{2n}{n+4}$ lim $b_n = \lim_{n \to \infty} \frac{2n}{n+4} = 2 \neq 0$
 $n \to \infty$ $n \to \infty$ $n \to \infty$ $n + 4$
 \Rightarrow diverges by Divergence test.
(b) $b_n = \frac{n^2}{n^3 + 4} > 0$ for $n > 1$, decreasing for $n > 2$ since $b_n < 0$
and $\lim_{n \to \infty} b_n = 0 \Rightarrow \sum_{n \to \infty} (-1)^{n+1} b_n$ converges by the
Alternating series test.

11. For what values of
$$p$$
 is the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}$ convergent?

If
$$p > 0$$
, $\frac{1}{(n+1)^{p}} \leftarrow \frac{1}{n p}$ and $\lim_{n \to \infty} \frac{1}{n p} = 0$
 \Rightarrow converges by the alternating series test.
If $p \le 0$, $\lim_{n \to \infty} \frac{(-1)^{n-1}}{n^{p}}$ Poes not exist
 $\xrightarrow{n \to \infty} \frac{1}{n p}$ the series diverges.
 $\Rightarrow an converges \iff p > 0$

12. Determine whether the series is absolutely convergent or conditionally convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

(b) $\sum_{n=1}^{\infty} \frac{\sin n}{2^n}$
(a) $bn = \frac{1}{(n)} > o$ for $n > 1$ bn decreasing for $n > 1$, $lim bn = o$
 $n \to \infty$
 $\implies \sum \frac{(-1)^{n-1}}{(n)}$ converges by alternating series test.
 $Rut \sum \frac{1}{\sqrt{n}}$ diverges because p-series
 $\implies \sum \frac{(-1)^{n-1}}{(n)}$ conditionally convergent.
(b) $o < \left[\frac{\sin n}{2^n} \left| \left\langle \frac{1}{2^n}; n > 1 \right\rangle \right] < \sum \frac{1}{2^n}$ conv. (opeometric serie)
 $\implies \sum \left[\frac{\sin n}{2^n} \right]$ conv. by comparison test
 $\implies \sum \frac{\sin n}{2^n}$ conv. absolutely.

13. Use the ratio test to determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{5^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi/3)}{n!}$$

14. For which of the following series is the ratio test inconclusive (that is, it fails to give a definite answer)?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^3}$$
 $\lim_{n \to 1} \frac{n^3}{(n+1)^3} = ($ \Rightarrow in Conclusive
(b) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ $\lim_{n \to 1} \frac{n+1}{2^n} \cdot \frac{2^{n+1}}{n} = \lim_{n \to 1} \frac{n+1}{2^n} = \frac{1}{2} \Rightarrow$ Conclusive (Conv.)
(c) $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{\sqrt{n}}$ $\lim_{n \to 1} \frac{(-3)^n}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(-3)^{n-1}} = \lim_{n \to 1} \frac{3\sqrt{n}}{\sqrt{n+1}} = 3 \Rightarrow$ Conclusive (div.)
(d) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{1+n^2}$ $\lim_{n \to 1} \frac{\sqrt{n+1}}{\sqrt{n}} \cdot \frac{1+n^2}{\sqrt{n}} = 1 \Rightarrow$ inconclusive

For all the questions above, compute lim $\frac{a_{n+1}}{a_n}$