- 1. Find the equation of the tangent line to the curve at the given point.
 - (a) $y = 4x 3x^2$ at (2, -4)(b) $y = x^3 - 3x + 1$ at (2, 3)(c) $y = \sqrt{x}$ at (1, 1)(d) $y = \frac{2x + 1}{x + 2}$ at (1, 1)

2. Find the derivative of the function using the definition of derivative.

(a)
$$f(x) = 3x -$$

(b) $g(t) = \frac{1}{\sqrt{t}}$

8

3. Differentiate the following functions using the differentiation rules.

(a)
$$f(x) = e^{x} - x^{5}$$

(b) $f(x) = \frac{x^{2} + x - 2}{x^{3} + 6}$
(c) $f(x) = (x^{3} + 1) e^{x}$
(d) $f(x) = (5x^{6} + 2x^{3})^{4}$
(e) $f(x) = (3x - 1)^{4}(2x + 1)^{-3}$

4. Differentiate the following functions.

(a)
$$f(x) = x^{2} \sin(7x)$$

(b) $f(\theta) = \sec(\theta) \tan(4\theta)$
(c) $f(t) = \frac{t \sin(t^{2} + 2t)}{1 + t}$
(d) $f(x) = \frac{\sin(4x^{3})}{1 + \tan(x^{2})}$

5. Find the limit.

(a)
$$\lim_{x \to 0} \frac{\sin(5x)}{3x}$$

(b)
$$\lim_{x \to 0} \frac{\sin(x)}{\sin(\pi x)}$$

(c)
$$\lim_{x \to 0} \frac{\sin(x^2)}{x}$$

6. If F(x) = f(3x), where f'(0) = 2, find F'(0).

7. Find the 50th derivative of $y = \cos(x)$.

- 8. Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
 - (a) $y\sin(2x) = x\cos(2y)$ at $(\frac{\pi}{2}, \frac{\pi}{4})$
 - (b) $x^2 + 2xy + 4y^2 = 12$ at (2, 1)

9. Find y'.

(a)
$$y = \sqrt{x} \ln x$$

(b) $y = \ln(1 + \ln x)$

- 10. A bacteria culture initially contains 100 cells and grows at a rate proportional to its size. After an hour the population has increased to 420.
 - (a) Find an expression for the number of bacteria after t hours.
 - (b) Find the rate of growth after 3 hours.