1. Use the graph of $f(x)$ in the following figure to determine each of the following values:
(a) $\lim _{x \rightarrow-4^{-}} f(x) ; \lim _{x \rightarrow-4^{+}} f(x) ; \lim _{x \rightarrow-4} f(x) ; f(-4)$
(b) $\lim _{x \rightarrow-2^{-}} f(x) ; \lim _{x \rightarrow-2^{+}} f(x) ; \lim _{x \rightarrow-2} f(x) ; f(-2)$
(c) $\lim _{x \rightarrow 1^{-}} f(x) ; \lim _{x \rightarrow 1^{+}} f(x) ; \lim _{x \rightarrow 1} f(x) ; f(1)$
(d) $\lim _{x \rightarrow 3^{-}} f(x) ; \lim _{x \rightarrow 3^{+}} f(x) ; \lim _{x \rightarrow 3} f(x) ; f(3)$

2. Evaluate each of the following limits:
(a) $\lim _{x \rightarrow 5^{+}} \frac{x+1}{x-5}$
(b) $\lim _{x \rightarrow 5^{-}} \frac{x+1}{x-5}$
(c) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 x}{x^{2}-4 x+4}$
3. Find the vertical asymptotes of the function $y=\frac{x^{2}+1}{3 x-2 x^{2}}$.
4. Graph $f(x)=\left\{\begin{array}{ll}-x-2 & \text { if } x<-1 \\ 2 & \text { if } x=-1 \\ x^{3} & \text { if } x>-1\end{array}\right.$ and evaluate $\lim _{x \rightarrow-1^{-}} f(x)$.
5. Evaluate the limit, or show it does not exist.
(a) $\lim _{x \rightarrow 5} \frac{x^{2}-6 x+5}{x-5}$
(b) $\lim _{t \rightarrow 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$
(c) $\lim _{x \rightarrow-4} \frac{\sqrt{x^{2}+9}-5}{x+4}$
(d) $\lim _{x \rightarrow 16} \frac{4-\sqrt{x}}{16 x-x^{2}}$
6. Find the numbers at which f is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Sketch the graph of f.

$$
f(x)= \begin{cases}x^{2} & \text { if } x<-1 \\ x & \text { if }-1 \leqslant x<1 \\ 1 / x & \text { if } x \geqslant 1\end{cases}
$$

7. Suppose f and g are continuous functions such that $g(2)=6$ and $\lim _{x \rightarrow 2}(3 f(x)+f(x) g(x))=36$. Find $f(2)$.
8. Use the Intermediate Value Theorem to show that $y=x^{4}+x-3$ has a root on the interval $(1,2)$.
9. Find the limit or show that it does not exist:
(a) $\lim _{x \rightarrow \infty} \frac{3 x-2}{2 x+1}$
(b) $\lim _{x \rightarrow \infty} \frac{x^{4}-3 x^{2}+x}{x^{3}-x+2}$
(c) $\lim _{x \rightarrow-\infty} \frac{1-x^{2}}{x^{3}-x+1}$
10. Find the horizontal and vertical asymptotes of the graphs of the following functions:
(a) $y=\frac{5+4 x}{x+3}$
(b) $y=\frac{2 x^{2}+1}{3 x^{2}+2 x-1}$
(c) $y=\frac{2 e^{x}}{e^{x}-5}$
