Confidence Intervals and Test Statistics

	Sampling Conditions	Confidence Interval	Test Statistic
	σ^2 is known $\Rightarrow \overline{X} \sim N(\mu, \sigma^2/n)$	$\overline{X} \pm Z_{a/2} \left(\frac{\sigma}{\sqrt{n}} \right)$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$
Yes	σ^2 is unknown $\Rightarrow \overline{X} \sim N (\mu, \sigma^2/n)$	$\overline{X} \pm Z_{a/2} \left(\frac{s}{\sqrt{n}} \right)$	$Z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$
Is n is large, say over 30?			
		$\overline{p} \pm Z_{\alpha/2} \Biggl(\sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \Biggr)$	$Z = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
No	$X \sim N (\mu, \sigma^2)$ and σ^2 is known $\Rightarrow \overline{X} \sim N (\mu, \sigma^2/n)$	$\overline{X} \pm Z_{a/2} \left(\frac{\sigma}{\sqrt{n}} \right)$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$
	$X \sim N (\mu, \sigma^2)$ and σ^2 is unknown $\Rightarrow \overline{X} \sim t_{n-1} (\mu, \sigma^2/n)$	$\overline{X} \pm t_{n-1,\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$	$t_{n-1} = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$

		,
Population Proportion	Two Population Proportions	Population Mean
Parameter p	Parameter $p_1 - p_2$	Parameter μ
Statistic \hat{p}	Statistic $\hat{p}_1 - \hat{p}_2$	Statistic \bar{x}
Standard Error	Standard Error	Standard Error
$s.e.(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	s.e. $(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	$s.e.(\overline{x}) = \frac{s}{\sqrt{n}}$
Confidence Interval	Confidence Interval	Confidence Interval
$\hat{p} \pm z^*$ s.e. (\hat{p})	$(\hat{p}_1 - \hat{p}_2) \pm z^* \text{s.e.} (\hat{p}_1 - \hat{p}_2)$	$\overline{x} \pm t^* \text{s.e.}(\overline{x})$ df = $n-1$
Conservative Confidence Interval		
, z*		Paired Confidence Interval
$\hat{p} \pm \frac{z^*}{2\sqrt{n}}$		Paired Confidence Interval $\overline{d} \pm t^*$ s.e. (\overline{d}) $df = n - 1$
$\hat{p} \pm \frac{z^*}{2\sqrt{n}}$ Large-Sample z-Test	Large-Sample z-Test	
	Large-Sample z-Test $z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$\overline{d} \pm t^*$ s.e. (\overline{d}) $df = n - 1$
Large-Sample z-Test		$\overline{d} \pm t^*$ s.e. (\overline{d})