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Vectors
•The sum, A + B, of two vectors, A and B,

is the vector created by placing the tail of
B on the head of A and then drawing a
line segment from A’s tail to B’s head:

•To determine the difference between two
vectors, rewrite the equation as a sum:
B = C −A can be rewritten as
A + B = C, so B in the above illustration
is the difference between C and A.
•A and B are components of C because they

add up to C. Components that are
perpendicular to each other are
particularly useful. We commonly use i,
which points in the positive x-direction, j,
which points in the positive y-direction,
and k, which points in the positive
z-direction. All three vectors have a length
of one.
•The dot product, A ·B, between two

vectors, A and B, is the real number

A ·B = AB cos θ = AxBx + AyBy + AzBz.

Some useful dot products are

i · i = j · j = k · k = 1.

All other possible dot products between i,
j, and k are zero.
•The cross product, A×B, between two

vectors, A and B, is a vector whose length
is A×B = AB sin θ.
You find the direction of the cross product
using the right-hand rule: point the fingers
of your right hand along the direction of A

and hold your hand so that you can turn it
towards B. Your thumb is pointing in the
direction of the cross product.

•The vector area of a surface is a vector
whose length is equal to the area of the
surface and that points “out” at ninety
degrees from the surface.
•A CALCULUS CONCEPT The path

integral of a vector function of position,
f (r), along a path, P, defined by the curve
(x(λ), y(λ), z(λ)), is
∫

P

f (r) · dr =
∫

(

fx
dx

dλ
+ fy

dy

dλ
+ fz

dz

dλ

)

dλ.

Some Basic Considerations
•Draw a picture to help you visualize the

problem. Label it with the algebraic
variables for the quantities given to you.
•Think of what relationships exist between

what you are given and what is needed.
•Work the problem with the algebraic

variables for as long as possible. Only
insert numbers at the end.
•Use units when inserting the numbers and

make sure they match correctly.
•Use significant digits correctly while doing

calculations.

Fundamental Kinematic Quantities
• t is the instant of time that we are looking

at the system.
• t0 is the instant that the initial conditions of

the system were set; often has a value of
zero.
• r(t) ≡ x(t)i + y(t)j + z(t)k ≡ r(t)r̂(t) is the

position vector. It indicates the particle’s
location and it is time-dependent.
• r0 ≡ r (t0) is the initial position of the

particle.
•∆r = r − r0 is the displacement vector.
•A CALCULUS QUANTITY dr is the

infinitesimal displacement.
•A CALCULUS QUANTITY

v =
dr

dt

is the instantaneous velocity of the
particle. Its magnitude, v, is the
instantaneous speed of the particle.
v0 ≡ v (t0) is the initial velocity of the
particle.
•

vave =
∆r

t− t0
≡

∆r

∆t

is the average velocity of the particle over
the period of time ∆t. Its magnitude, vave,
is the average speed of the particle.
•A CALCULUS QUANTITY

a =
dv

dt

is the instantaneous acceleration of the
particle.
•

aave =
∆v

∆t
is the average acceleration of the particle
over the the period of time ∆t.

The Basic Kinematic Equations
For a particle experiencing constant
acceleration

r(t) = 1
2at2 + v0t + r0.

v2 = v2
0 + 2a ·∆r.

v = at + v0.

vave =
v + v0

2
.

Fundamental Dynamic Quantities
•m is the mass of the particle; both its

tendency to resist acceleration and its
interaction strength with gravitational
fields.
• q is the charge of the particle; its

interaction strength with electric fields.

Newton’s Laws
1. If there is no net force on a particle, it

experiences no acceleration. The particle is
in equilibrium.

2. Let
∑

F be the net force on the
particle—the vector sum of all the forces
acting on it. This net force produces an
acceleration on the particle determined by
∑

F = ma.
3. If Particle 1 exerts a force on Particle 2,

Particle 2 exerts a force equal in magnitude
and opposite in direction on Particle 1.

Contact Forces
•When a particle exerts a force on a surface,

the surface feels the component of that
force that is perpendicular, or normal, to
the surface. By Newton’s third law, the
surface exerts a force, N , equal and
opposite to this normal component.
•The frictional force, f , has maximum

magnitude µN .
•The fluid resistance, f has a

velocity-dependent magnitude, so the
basic kinematic equations do not apply.

f =







kv, low velocities,
Dv2. high velocities.

•The buoyant force, B, is upward with a
magnitude equal to the weight of the fluid
displaced.
•A spring “stretched” a distance, x, (a

negative value means the spring is
squished) exerts a force, F = −kxi.

Forces Mediated Through Fields
•The force exerted on a particle with mass,
m, from a gravitational field, g (r), at a
position, r, is F = mg (r).
•The force exerted on a particle with

charge, q, with a velocity, v, from an
electric field, E (r), and a magnetic field,
B (r), at a position, r, is

F = q [E (r) + v × B (r)] .

This is the Lorentz force equation.

Classical Fields
•The gravitational field, g (r), at a position,
r, created by a point source mass, M , at
the origin is

g (r) = −G
M

r2
r̂.

A USEFUL APPROXIMATION At an
altitude of less than 1100 meters, g is
downward with a constant value of
g = 9.81 m/s2.
•The electric field, E (r), at a position, r,

created by a point source charge, Q, at the
origin is

E (r) =
1

4πε0

Q

r2
r̂.

•The magnetic field, B (r), at a position, r,
created by a point source charge, Q, at the
origin and moving with a velocity, v, is

B (r) =
µ0

4π

Qv × r̂

r2
.

Angular Kinematics and Dynamics
Everything that happens in a straight line
has its equivalent when rotating:
Linear Quantity Angular Quantity

t t
x θ
v ω
a α
m I
q q
F τ

The linear and angular quantities are
connected by the relationship s = rθ when
the rotational motion is circular.

Work Energy Theorem

W ≡

∫

P

F (r) · dr = ∆K ≡ 1
2mfv

2
f −

1
2miv

2
i .

Potential Energy
If F is a conservative force and P is any path
from an arbitrary location, called ground, to
the point determined by r, then the potential
energy, U (r), from F is

U (r) = −
∫

P

F (r) · dr = −WGround to r.

The potential energy at ground is always
zero.

•With ground infinitely far away,
– The potential energy from gravity is

U (r) = −G
mM

r
.

A USEFUL APPROXIMATION At an
altitude of less than 1100 meters, the
potential energy at a height, h, is

U(h) = mgh.

– The potential energy from an electric
field is

U (r) =
1

4πε0

qQ

r
.

•The potential energy from a magnetic field
is zero because magnetic forces never do
work.
•The potential energy of a spring is

U(x) =
1

2
kx2.

Potential
When potential energy comes from a field,
there exists a quantity known as potential
(not to be confused with potential energy).
The electric potential, V (r), is

V (r) =
1

4πε0

Q

r
.

Note that, of F , E, U , and V , the potential is
the easiest quantity to calculate. The four
quantities are related by

F
F=qE
←−−− E

F=−∇U

x







x







E=−∇V

U
U=qV
←−−− V

Gauss’s Law

Φ ≡
∮

G
E (r) · da =

Qinside

ε0
.

THE TRICK In situations where the charge
distribution reduces the spatial dependency
of E, draw a Gaussian surface that keeps E

constant and pull it outside the integral.


